skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McLaughlin, Maura_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We report on findings from scintillation analyses using high-cadence observations of eight canonical pulsars with observing baselines ranging from 1–3 yr. We obtain scintillation bandwidth and timescale measurements for all pulsars in our survey and scintillation arc curvature measurements for four, and we detect multiple arcs for two. We find evidence of a previously undocumented scattering screen along the line of sight (LOS) to PSR J1645−0317, as well as evidence that a scattering screen along the LOS to PSR J2313+4253 may reside somewhere within the Milky Way’s Orion–Cygnus arm. We report evidence of a significant change in the scintillation pattern in PSR J2022+5154 from the previous two decades of literature, wherein both the scintillation bandwidth and timescale decreased by an order of magnitude relative to earlier observations at the same frequencies, potentially as a result of a different screen dominating the observed scattering. By augmenting the results of previous studies, we find general agreement with estimations of scattering delays from pulsar observations and predictions by the NE2001 electron density model but not for the newest data we have collected, providing some evidence of changes in the ISM along various LOSs over the timespans considered. In a similar manner, we find additional evidence of a correlation between a pulsar’s dispersion measure and the overall variability of its scattering delays over time. The plethora of interesting science obtained through these observations demonstrates the capabilities of the Green Bank Observatory’s 20 m telescope to contribute to pulsar-based studies of the interstellar medium. 
    more » « less
  2. Abstract We use cyclic spectroscopy to perform high-frequency resolution analyses of multihour baseband Arecibo observations of the millisecond pulsar PSR B1937+21. This technique allows for the examination of scintillation features in far greater detail than is otherwise possible under most pulsar timing array observing setups. We measure scintillation bandwidths and timescales in each of eight subbands across a 200 MHz observing band in each observation. Through these measurements we obtain intra-epoch estimates of the frequency scalings for scintillation bandwidth and timescale. Thanks to our high-frequency resolution and the narrow scintles of this pulsar, we resolve scintillation arcs in the secondary spectra due to the increased Nyquist limit, which would not have been resolved at the same observing frequency with a traditional filterbank spectrum using NANOGrav’s current time and frequency resolutions, and the frequency-dependent evolution of scintillation arc features within individual observations. We observe the dimming of prominent arc features at higher frequencies, possibly due to a combination of decreasing flux density and the frequency dependence of the plasma refractive index of the interstellar medium. We also find agreement with arc curvature frequency dependence predicted by Stinebring et al. in some epochs. Thanks to the frequency-resolution improvement provided by cyclic spectroscopy, these results show strong promise for future such analyses with millisecond pulsars, particularly for pulsar timing arrays, where such techniques can allow for detailed studies of the interstellar medium in highly scattered pulsars without sacrificing the timing resolution that is crucial to their gravitational-wave detection efforts. 
    more » « less
  3. Abstract A small number of pulsars are known to emit giant pulses (GPs), single pulses much brighter than average. Among these is PSR J0534+2200, also known as the Crab pulsar, a young pulsar with high GP rates. Long-term monitoring of the Crab pulsar presents an excellent opportunity to perform statistical studies of its GPs and the processes affecting them, potentially providing insight into the behavior of other neutron stars that emit bright single pulses. Here, we present an analysis of a set of 24,985 Crab GPs obtained from 88 hr of daily observations at a center frequency of 1.55 GHz by the 20 m telescope at the Green Bank Observatory, spread over 461 days. We study the effects of refractive scintillation at higher frequencies than previous studies and compare methods of correcting for this effect. We also search for deterministic patterns seen in other single-pulse sources, possible periodicities seen in several rotating radio transients and fast radio bursts, and clustering of GPs like that seen in the repeating fast radio burst FRB 121102. 
    more » « less
  4. Abstract Pulsar timing array experiments have recently uncovered evidence for a nanohertz gravitational wave background by precisely timing an ensemble of millisecond pulsars. The next significant milestones for these experiments include characterizing the detected background with greater precision, identifying its source(s), and detecting continuous gravitational waves from individual supermassive black hole binaries. To achieve these objectives, generating accurate and precise times of arrival of pulses from pulsar observations is crucial. Incorrect polarization calibration of the observed pulsar profiles may introduce errors in the measured times of arrival. Further, previous studies have demonstrated that robust polarization calibration of pulsar profiles can reduce noise in the pulsar timing data and improve timing solutions. In this paper, we investigate and compare the impact of different polarization calibration methods on pulsar timing precision using three distinct calibration techniques: the Ideal Feed Assumption (IFA), Measurement Equation Modeling (MEM), and Measurement Equation Template Matching (METM). Three NANOGrav pulsars—PSRs J1643−1224, J1744−1134, and J1909−3744—observed with the 800 MHz and 1.5 GHz receivers at the Green Bank Telescope (GBT) are utilized for our analysis. Our findings reveal that all three calibration methods enhance timing precision compared to scenarios where no polarization calibration is performed. Additionally, among the three calibration methods, the IFA approach generally provides the best results for timing analysis of pulsars observed with the GBT receiver system. We attribute the comparatively poorer performance of the MEM and METM methods to potential instabilities in the reference noise diode coupled to the receiver and temporal variations in the profile of the reference pulsar, respectively. 
    more » « less
  5. Abstract Context.By providing information about the location of scattering material along the line of sight (LoS) to pulsars, scintillation arcs are a powerful tool for exploring the distribution of ionized material in the interstellar medium (ISM). Here, we present observations that probe the ionized ISM on scales of ∼0.001–30 au.Aims.We have surveyed pulsars for scintillation arcs in a relatively unbiased sample with DM < 100 pc cm−3. We present multifrequency observations of 22 low to moderate DM pulsars. Many of the 54 observations were also observed at another frequency within a few days.Methods.For all observations, we present dynamic spectra, autocorrelation functions, and secondary spectra. We analyze these data products to obtain scintillation bandwidths, pulse broadening times, and arc curvatures.Results.We detect definite or probable scintillation arcs in 19 of the 22 pulsars and 34 of the 54 observations, showing that scintillation arcs are a prevalent phenomenon. The arcs are better defined in low DM pulsars. We show that well-defined arcs do not directly imply anisotropy of scattering. Only the presence of reverse arclets and a deep valley along the delay axis, which occurs in about 20% of the pulsars in the sample, indicates substantial anisotropy of scattering.Conclusions.The survey demonstrates substantial patchiness of the ionized ISM on both astronomical-unit-size scales transverse to the LoS and on ∼100 pc scales along it. We see little evidence for distributed scattering along most lines of sight in the survey. 
    more » « less
  6. Abstract The millisecond pulsar J1713+0747 underwent a sudden and significant pulse shape change between 2021 April 16 and 17 (MJDs 59320 and 59321). Subsequently, the pulse shape gradually recovered over the course of several months. We report the results of continued multifrequency radio observations of the pulsar made using the Canadian Hydrogen Intensity Mapping Experiment and the 100 m Green Bank Telescope in a 3 yr period encompassing the shape change event, between 2020 February and 2023 February. As of 2023 February, the pulse shape had returned to a state similar to that seen before the event, but with measurable changes remaining. The amplitude of the shape change and the accompanying time-of-arrival residuals display a strong nonmonotonic dependence on radio frequency, demonstrating that the event is neither a glitch (the effects of which should be independent of radio frequency,ν) nor a change in dispersion measure alone (which would produce a delay proportional toν−2). However, it does bear some resemblance to the two previous “chromatic timing events” observed in J1713+0747, as well as to a similar event observed in PSR J1643−1224 in 2015. 
    more » « less
  7. Abstract Pulsar timing arrays (PTAs) are designed to detect low-frequency gravitational waves (GWs). GWs induce achromatic signals in PTA data, meaning that the timing delays do not depend on radio frequency. However, pulse arrival times are also affected by radio-frequency-dependent “chromatic” noise from sources such as dispersion measure (DM) and scattering delay variations. Furthermore, the characterization of GW signals may be influenced by the choice of chromatic noise model for each pulsar. To better understand this effect, we assess if and how different chromatic noise models affect the achromatic noise properties in each pulsar. The models we compare include existing DM models used by the North American Nanohertz Observatory for Gravitational waves (NANOGrav) and noise models used for the European PTA Data Release 2 (EPTA DR2). We perform this comparison using a subsample of six pulsars from the NANOGrav 15 yr data set, selecting the same six pulsars as from the EPTA DR2 six-pulsar data set. We find that the choice of chromatic noise model noticeably affects the achromatic noise properties of several pulsars. This is most dramatic for PSR J1713+0747, where the amplitude of its achromatic red noise lowers from log 10 A RN = 14.1 0.1 + 0.1 to 14.7 0.5 + 0.3 , and the spectral index broadens from γ RN = 2.6 0.4 + 0.5 to γ RN = 3.5 0.9 + 1.2 . We also compare each pulsar's noise properties with those inferred from the EPTA DR2, using the same models. From the discrepancies, we identify potential areas where the noise models could be improved. These results highlight the potential for custom chromatic noise models to improve PTA sensitivity to GWs. 
    more » « less
  8. Abstract The cosmic merger history of supermassive black hole binaries (SMBHBs) is expected to produce a low-frequency gravitational wave background (GWB). Here we investigate how signs of the discrete nature of this GWB can manifest in pulsar timing arrays (PTAs) through excursions from, and breaks in, the expected f GW 2 / 3 power law of the GWB strain spectrum. To do this, we create a semianalytic SMBHB population model, fit to North American Nanohertz Observatory for Gravitational Waves (NANOGrav’s) 15 yr GWB amplitude, and with 1000 realizations, we study the populations’ characteristic strain and residual spectra. Comparing our models to the NANOGrav 15 yr spectrum, we find two interesting excursions from the power law. The first, at 2 nHz, is below our GWB realizations with ap-value significancep= 0.05–0.06 (≈1.8σ–1.9σ). The second, at 16 nHz, is above our GWB realizations withp= 0.04–0.15 (≈1.4σ–2.1σ). We explore the properties of a loud SMBHB that could cause such an excursion. Our simulations also show that the expected number of SMBHBs decreases by 3 orders of magnitude, from ∼106to ∼103, between 2 and 20 nHz. This causes a break in the strain spectrum as the stochasticity of the background breaks down at 26 19 + 28 nHz , consistent with predictions pre-dating GWB measurements. The diminished GWB signal from SMBHBs at frequencies above the 26 nHz break opens a window for PTAs to detect continuous GWs from individual SMBHBs or GWs from the early Universe. 
    more » « less